Package: TCA 1.2.1
TCA: Tensor Composition Analysis
Tensor Composition Analysis (TCA) allows the deconvolution of two-dimensional data (features by observations) coming from a mixture of heterogeneous sources into a three-dimensional matrix of signals (features by observations by sources). The TCA framework further allows to test the features in the data for different statistical relations with an outcome of interest while modeling source-specific effects; particularly, it allows to look for statistical relations between source-specific signals and an outcome. For example, TCA can deconvolve bulk tissue-level DNA methylation data (methylation sites by individuals) into a three-dimensional tensor of cell-type-specific methylation levels for each individual (i.e. methylation sites by individuals by cell types) and it allows to detect cell-type-specific statistical relations (associations) with phenotypes. For more details see Rahmani et al. (2019) <doi:10.1038/s41467-019-11052-9>.
Authors:
TCA_1.2.1.tar.gz
TCA_1.2.1.zip(r-4.5)TCA_1.2.1.zip(r-4.4)TCA_1.2.1.zip(r-4.3)
TCA_1.2.1.tgz(r-4.4-any)TCA_1.2.1.tgz(r-4.3-any)
TCA_1.2.1.tar.gz(r-4.5-noble)TCA_1.2.1.tar.gz(r-4.4-noble)
TCA_1.2.1.tgz(r-4.4-emscripten)TCA_1.2.1.tgz(r-4.3-emscripten)
TCA.pdf |TCA.html✨
TCA/json (API)
NEWS
# Install 'TCA' in R: |
install.packages('TCA', repos = c('https://cozygene.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cozygene/tca/issues
Last updated 4 years agofrom:e8d8ffeb34. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win | NOTE | Oct 26 2024 |
R-4.5-linux | NOTE | Oct 26 2024 |
R-4.4-win | NOTE | Oct 26 2024 |
R-4.4-mac | NOTE | Oct 26 2024 |
R-4.3-win | NOTE | Oct 26 2024 |
R-4.3-mac | NOTE | Oct 26 2024 |
Exports:refactortcatcaregtcasubtensortest_data
Dependencies:configdata.tableformatRfutile.loggerfutile.optionsgdatagmodelsgtoolslambda.rlatticeMASSMatrixmatrixcalcmatrixStatsnloptrpbapplypracmaquadprogrsvdyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Sparse principal component analysis using ReFACTor | refactor |
Fitting the TCA model | tca |
Fitting a TCA regression model | tcareg |
Subsetting features from a TCA model | tcasub |
Extracting hidden 3D signals from 2D input | tensor |
Generate test data | test_data |